Matrix and serine protease expression during leukemic cell differentiation induced by aclacinomycin and all-trans-retinoic acid.
نویسندگان
چکیده
In myeloid leukemia, immature leukemic cells are able to egress into peripheral blood to infiltrate extra-medullary organs. We therefore analyzed the migrating and invasive potential of human HL-60 and NB4 cell lines, representative of acute myelogenous leukemia, their ability to express matrix metalloproteases (MMPs), tissue inhibitors of metalloproteases (TIMPs) and urokinase plasminogen activator (uPA) in response to differentiating agents. Granulocytic differentiation by all-trans-retinoic acid (ATRA) and aclacinomycin (ACLA) strongly increased HL-60 and NB4 cell migration and invasion. At mRNA and protein levels, these cell lines produced significant amounts of MMP-9 (HL-60<NB4). Granulocytic differentiation by ACLA increased both pro and active forms of MMP-9 whereas ATRA decreased them and stimulated uPA mRNAs. TIMP-1, the physiological MMP inhibitor, increased during granulocytic differentiation whereas TIMP-2 did not significantly vary. Use of Batimastat and aprotinin suggests that ATRA was active by modulating the uPA system while ACLA interfered with MMP expression. In conclusion, our data demonstrate that HL-60 and NB4 cells express MMPs and uPA which are differentially regulated by the differentiating agents ATRA and ACLA and suggest the clinical usefulness of MMPs and serine protease inhibitors in the prophylaxis and treatment of the ATRA syndrome.
منابع مشابه
Functional interactions between bile acids, all-trans retinoic acid, and 1,25-dihydroxy-vitamin D3 on monocytic differentiation and myeloblastin gene down-regulation in HL60 and THP-1 human leukemia cells.
Bile acids were shown previously to inhibit proliferation and to induce monocytic differentiation in HL60 human acute promyelocytic leukemia cells (A. Zimber et al., Int. J. Cancer, 59: 71-77, 1994). In this report, we hypothesized that bile acids may exert a positive cooperativity with two known inducers of leukemic cell differentiation, all-trans retinoic acid and 1,25(OH)2-vitamin D3. Our re...
متن کاملAccumulation of hypoxia-inducible factor-1 alpha protein and its role in the differentiation of myeloid leukemic cells induced by all-trans retinoic acid.
BACKGROUND The clinical activities of all-trans retinoic acid in the treatment of acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia, have triggered extensive studies aimed at defining the mechanisms by which this compound induces differentiation of leukemic cells. Recent studies show that hypoxia-inducible factor-1 alpha (HIF-1 alpha) contributes to the differentiation of...
متن کاملتاثیر غلظتهای مختلف ال- ترانس رتینوئیک اسید بر رشد و بقای سلولهای بنیادی فولیکول موی موش سوری
Background and Objective: Hair follicle stem cells are multipotent, located in the bulge area, and are highly proliferating. Retinoids have an effect on epidermal differentiation and keratinization. Retinoic acid is used to treat some skin diseases such as Melasma, Acne and Ichthyosis. So, the study of all-trans retinoic acid effect on hair follicle stem cells and determination of the effective...
متن کاملAnalysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation
Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...
متن کاملThe death-associated protein kinase 2 (DAPK2) is up- regulated during normal myeloid differentiation and enhances neutrophil maturation in myeloid leukemic cells
The death-associated protein kinase 2 (DAPK2) belongs to a family of Ca /calmodulinregulated serine/threonine kinases involved in apoptosis. During investigation of candidate genes operative in granulopoiesis, we identified DAPK2 as highly expressed. Subsequent investigations demonstrated particularly high DAPK2 expression in normal granulocytes compared with monocytes/ macrophages and CD34 pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical pharmacology
دوره 63 2 شماره
صفحات -
تاریخ انتشار 2002